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Abstract
The hysteretic voltage gap �V (m)—the difference between the threshold
voltages for single-charge-soliton tunnelling into and escape from a single-
electron dual-junction-array trap (which consists of 2N gated small junctions
with equal junction capacitances C, equal stray capacitances C0, equal input
gate capacitances C1, and coupling capacitance CC) through an m-junction
cotunnelling process—is investigated for various charge solitons including a
single electron, an exciton, and a combined soliton. Our results show that
�V (m) has a strong dependence on m, C0/C, C1/C, CC/C, and N , and that
no hysteresis loop exists beyond a critical value ηc of C0/C. For finite stray
capacitance and strong coupling capacitance, the exciton can be a candidate
for use in constructing more stable single-electron circuits, as in the case of no
stray capacitance and weak coupling capacitance previously discussed in the
literature.

Correlated single-electron tunnelling phenomena based on the Coulomb blockade effect in
nanostructures have been attracting wide attention. A lot of progress has been made [1–5] on
the physics of single-electron tunnelling (SET) phenomena and on a wide variety of SET device
applications. One system of interest to us is the single-electron dual-junction-array trap, which
is composed of two capacitively coupled normal traps as shown in figure 1. In this system, the
currents in the left and right arrays flow in a highly correlated manner because charge transport
in the system is strongly affected by electrostatic coupling. Recently, Amakawa, Fujishima, and
Hoh [5] studied the charge transport in such a system by using computer simulation taking into
account cotunnelling, based on the tunnelling rate obtained from the approximation proposed
by Fonseca et al [6]. However, their study is restricted to the case of the small-coupling-
capacitance region, i.e. CC/C < 1, where CC and C are the coupling capacitance and the
junction capacitance, respectively. Therefore, there are still some important questions which
remain unanswered for the large-CC region. In addition, the role of the stray capacitance, which
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Figure 1. The single-electron dual-junction-array trap with 2N small junctions, with equal junction
capacitances C, equal stray capacitances C0, equal input gate capacitances C1, and coupling
capacitance CC . The bias voltages of the two edges are V/2 and −V/2, while the voltages in
the middle are U .

is known to be important in determining the soliton width in a one-dimensional (1D) array,
has not been fully explored. The purpose of this study is to present the hysteretic voltage gaps
of the single-electron dual-junction-array trap consisting of equal stray capacitances C0, equal
junction capacitances C, equal input gate capacitances C1, and coupling capacitance CC for
various charge-transfer processes (a single electron, a single exciton, and a combined soliton),
on the basis of the exact analytical solution to the electrostatic problem of the single-electron
dual-junction-array trap presented in the previous work [7], and to analyse them according to
the parameters contained in the system. In particular, we are interested in the effect of the stray
capacitance of the hysteretic voltage gap.

The starting point here is the Gibbs free energy, which can be written as [7]

F = Ech − e2

2C

2N∑
i,j=1

niHijnj − 1

2
VQ0 +

1

2
VQ2N+1 − UQ

g

N − UQ
g

N+1 (1)

where V is the bias voltage, U is the gate voltage on the input gate capacitance, ni is the
number of excess electrons on the ith island, and Hij is a matrix element which depends on
C0, C, C1, and CC . For detailed expressions for Ech, Hij , Q0, Q2N+1, Qg

N , and UQ
g

N+1, we
refer the reader to equations (19) and (20) in reference [7].

Equation (1) is a general expression for the Gibbs free energy of a single-electron dual-
junction-array trap with bias voltage {V,U} and charge profile {nie} on the islands. On the
basis of the Gibbs free energy (1), one can directly study the dynamics of the single-electron
tunnelling by calculating the change of the Gibbs free energy �F due to some charge-transfer
event. For definiteness, here we consider the three cases where the charge transfer was between
two islands k and k′, while the charges on the other islands are unchanged:

(i) the single-charge-soliton (e) case, where an electron is transferred from the kth island to
the k′th island in the left-hand-side array (or the right-hand-side array);

(ii) the exciton (electron–hole pair, e–h) case, where an electron in the left-hand-side array
is transferred from the kth island to the k′th island and an electron in the right-hand-side
array is simultaneously transferred from the (2N − k′ + 1)th island to the (2N − k + 1)th
island;
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(iii) the combined-soliton (exciton–single-electron, ex–e) case, where, in addition to the exciton
case, an electron in the left-hand-side array is transferred from the k′th island to the
k′′th island.

We assume, however, that the tunnelling between two islands N and N + 1 is negligible, so
we have two circuits that are independent galvanically but are coupled electrostatically [1].
We denote the charges on these islands before and after the charge transfer as {nk, nk′ } and
{n′k, n′k′ }, respectively, and the net transferred charges as Q, where Q can be a single electron,
an exciton, or a combined soliton. Under the above conditions, the change of the Gibbs free
energy for the three cases of charge-soliton transfer can be derived from equation (1).

The tunnelling of a charge soliton from the kth island to the k′th island in the single-electron
dual-junction-array trap is energetically favourable when the change of free energy�FQ(k, k′)
is less than zero, and vice versa. Thus, the threshold energy Vt for the transfer of a charge
soliton from the kth island onto the k′th island can be obtained by equating �FQ(k, k′) = 0.
From equation (1), we obtain (for convenience, we takeU = 0) for the single-electron-transfer
case, the exciton case, and the combined-soliton case, respectively,

V e
t (k, k

′) = e

C

(Hk′k′ −Hkk)

δ0,k′ − δ0,k − δ2N+1,k′ + δ2N+1,k −H1k′ + H2Nk′ + H1k −H2Nk

(2)

V ex
t (k, k′) = 2e

C
(Hk′k′ −Hk′2N−k′+1 −Hkk + Hk2N−k+1)

× [
(δ0,k + δ2N+1,2N−k+1 − δ0,k′ − δ2N+1,2N−k′+1)

+ 2(H1k′ −H12N−k′+1 −H1k + H12N−k+1)
]−1

(3)

V ex−e
t (k; k′, k") = 2e

C
(Hk′k′ −Hk′2N−k′+1 −Hkk + Hk2N−k+1)

× [
(−δ0,k′ − δ2N+1,2N−k′+1 + δ0,k + δ2N+1,2N−k+1)

+ 2(H12N−k′+1 −H1k′ −H12N−k+1 + H1k)]
−1. (4)

Equations (2)–(4) enable us to immediately find the tunnelling and escape threshold voltages
at T = 0 in them-junction tunnelling sequence (k←→ k+m) for the single-electron-transfer
case, the exciton case, and the combined-soliton case, respectively.

For the m-junction tunnelling events of the single-electron-transfer case, the tunnelling
threshold voltage at T = 0 is given by V e

t (0,m) or V e
t (2N + 1, 2N + 1 − m) because

each absolute value is the largest for an electron tunnelling into the trap (N th island) of
the left-hand-side array or the trap ((N + 1)th island) of the right-hand-side array, whereas
the escape threshold voltage is given by V e

t (N,N − m) or V e
t (N + 1, N + 1 + m) because

each absolute value is the largest for an electron escaping from the trap (N th island) of the
left-hand-side array or the trap ((N +1)th island) of the right-hand-side array. In fact, V e

t (0,m)
and V e

t (2N + 1, 2N + 1−m) for the tunnelling threshold voltage have identical magnitudes,
and V e

t (N,N − m) and V e
t (N + 1, N + 1 + m) for the escape threshold voltage are same as

each other because the circuit is symmetric. As a result, the tunnelling and escape threshold
voltages are, respectively, given by

V e
t (0,m) = −

e

C

Hmm

1 + H1m −H2Nm

(5)

V e
t (N,N −m) = e

C

HN−mN−m −HNN

δ0,N−m −H1N−m + HN−m2N + H1N −H1N+1
for 1 � m � N.

(6)
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For the exciton case, the tunnelling and escape threshold voltages are, respectively, given
by V ex

t (0,m) and V ex
t (N,N − m) because their absolute values are, respectively, the largest

for an exciton tunnelling into the traps (N th and (N + 1)th island) of both sides and for an
exciton escaping from the traps, which are

V ex
t (0,m) = e

C

Hmm −Hm2N−m+1

1 + H1m −H12N−m+1
(7)

V ex
t (N,N −m) = 2e

C

HN−mN−m −HN−mN+1+m −HNN + HNN+1

−δ0,N−m − δ2N+1,N+m+1 + 2(H1N−m −H1N+m+1 −H1N + H1N+1)
. (8)

Similarly, the tunnelling and escape threshold voltages for the combined-soliton case are,
respectively, given by V ex−e

t (0;m,N) and V ex−e
t (N;m, 0) because their absolute values are

the largest for a combined soliton tunnelling into the trap and for a combined soliton escaping
from the trap, which are, respectively, obtained as

V ex−e
t (0;m,N) = e

C

Hmm + HNN − 2HmN+1

2 + H1m + H1N −H1N+1 −H12N−m+1
(9)

V ex−e
t (N;m, 0) = − e

C

Hmm −HNN + HNN+1

1−H1m + H12N−m+1 + 2H1N − 2H1N+1
. (10)

Equations (5)–(10) are general forms for the m-junction cotunnelling process, where solitons
tunnel across m junctions at the same time. When m = 1, it becomes the special case of
one-junction tunnelling.

An interesting phenomenon associated with the multi-junction trap, as in the measured
I–V curves [8], is the hysteretic loop; i.e. the tunnelling and escape of a soliton do not
occur at the same value of bias voltage V . Since we have obtained analytic expressions for
the threshold voltages for both the tunnelling and escape of a single charge soliton in the
single-electron dual-junction-array trap, we can now study the hysteretic phenomenon in a
quantitative way. For this purpose, we introduce the hysteretic voltage gap �V , which is
defined as the difference between the threshold voltages for the tunnelling and escape of a
soliton in the single-electron dual-junction-array trap. From this definition one can obtain the
results for the hysteretic voltage gaps of a single electron, an exciton, and a combined soliton
with cotunnelling transfer, respectively, as

�V e(m) ≡ V e
t (N,N −m)− V e

t (0,m)

= − e

C

(
HN−mN−m −HNN

H1N−m −H1N+m+1 −H1N + H1N+1
− Hmm

1 + H1m −H2Nm

)
(11)

�V ex(m) ≡ V ex
t (N,N −m)− V ex

t (0,m)

= e

C

(
HN−mN−m −HN−mN+1+m −HNN + HNN+1

H1N−m −H1N+m+1 −H1N + H1N+1
− Hmm −Hm2N−m+1

1 + H1m −H12N−m+1

)

(12)

and

�V ex−e(m) ≡ V ex−e
t (N;m, 0)− V ex−e

t (0;m,N)

= − e

C

(
Hmm −HNN + HNN+1

1−H1m + H12N−m+1 + 2H1N − 2H1N+1

+
Hmm + HNN − 2HmN+1

2 + H1m + H1N −H1N+1 −H12N−m+1

)
(13)
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wherem denotes the number of junctions that the electrons tunnel across. The�V of equations
(11)–(13) is a measure of the hysteretic effect for the single-charge-soliton transfer of the
single-electron dual-junction-array trap. When �V > 0, there is a difference between the
threshold voltages for the escape and tunnelling of a charge soliton. After a charge soliton
tunnels into the trap of system at a voltage above Vt(0,m), the soliton cannot escape until the
voltage is reduced to Vt(N,N −m). Things are different at �V (m) < 0, where a reduction of
the voltage from Vt(0,m) will immediately result in the escape of the soliton, i.e. the soliton
cannot be trapped in the system. Thus, it is to be noted that when �V > 0, the system
can be used as a memory cell. There are two important things of interest to us in equations
(11)–(13): one is which soliton has the largest hysteretic voltage gap and the other is how
the hysteretic voltage gaps depend on the stray capacitance C0, the input gate capacitance C1,
the coupling capacitance CC , the cotunnelling m, and the number of junctions N . From the
results obtained, we can get detailed information about the stability condition of the system
and a candidate for use in constructing the most stable single-electron circuits. In fact, the
analytical form of the stability condition can be obtained from the derivative of the hysteretic
voltage gaps in equations (11)–(13) with respect to the parameters given in the system, but
the results are not simple. So, the dependence of the hysteretic voltage gaps on the stray
capacitance C0, the input gate capacitance C1, the coupling capacitance CC , the cotunnelling
m, and the number of junctions N will be analysed numerically using equations (11)–(13). In
the following, we study the dependence on C0, CC , C1, and m of �V (m), taking N = 3 as
an example.

The stray-capacitance dependence of �V (1) (in units of e/C) for various charge solitons
is illustrated in figure 2, where we plot the hysteretic voltage gap of equations (11)–(13) as
a function of the ratio of the stray capacitance to the junction capacitance, i.e., η (≡C0/C)

at N = 3, m = 1, and β (≡C1/C) = 0.5, 1, 5 for two different coupling capacitances:
(a) α (≡CC/C) = 0.5 and (b) α = 5. As shown in figure 2(a), all charge solitons have
their maximum values of hysteretic voltage gaps at η = 0 for weak coupling capacitance
and all given β-values. In that case, the system becomes stable at η = 0 for weak coupling
capacitance and all given β-values because it is very difficult for the solitons to escape from
the trap of the system, as expected from the definition of �V . It is shown that when the stray
capacitance η increases, the hysteretic voltage gaps of all charge solitons decrease, which is
due to the decrease of the threshold voltages for the escape of charge solitons. Thus, the effect
of the stray capacitance reduces the stability of the system. It is also shown for weak coupling
capacitance that the single exciton is a candidate for use in constructing the most stable single-
electron circuits, as suggested by Amakawa et al [5], because the exciton has larger hysteretic
voltage gaps than any other charge solitons except for large η. Figure 2(b) shows that, for
strong coupling capacitance and all given β-values, single electrons and combined solitons
have their maximum values of hysteretic voltage gaps at η = 0 and their hysteretic voltage
gaps decrease with increase of the stray capacitance η, as in figure 2(a), whereas the single
excitons have their maximum values of hysteretic voltage gaps at a specific value of the stray
capacitance. It is clearly seen from the figure that the single exciton is a candidate for use
in constructing the most stable single-electron circuits, because the single exciton has larger
hysteretic voltage gaps than any other charge soliton except for large η, as in figure 2(a). It is
interesting to note that for weak coupling capacitance the most stable single-electron circuits
are constructed in the absence of stray capacitance, whereas for strong coupling capacitance
the most stable single-electron circuits are constructed in the presence of stray capacitance. If
the stray capacitance is very large for all given values of α and β, the combined soliton has
larger hysteretic voltage gaps than any other charge soliton, but the gaps are very small. So,
no special attention will be paid to this case.
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Figure 2. The hysteretic voltage gaps �V (1) (in units of e/C) of a single-electron dual-junction-
array trap with N = 3 for various charge solitons, as a function of C0/C at (a) C1/C = 0.5, 1, 5
(from the left-hand side to the right-hand side of the bottom part for solid lines and dashed lines, and
from top to bottom of the left-hand side for dotted lines) forCC/C = 0.5 and (b)C1/C = 0.5, 1, 5
(from the left-hand side to the right-hand side of the bottom part for solid lines, from the right-hand
side to the left-hand side of the bottom part for dashed lines, and from top to bottom of the left-hand
side for dotted lines) for CC/C = 5. Here CC , C1, C, and C0 are the coupling capacitances, input
gate capacitances, junction capacitances, and stray capacitances, respectively.

Another remarkable thing in figure 2 is that for all given values of α and β, the hysteretic
voltage gaps of all charge solitons, except for the combined soliton, approach zero as the value
of η increases. For zero hysteretic voltage gap, the threshold voltages for the tunnelling and
escape of the exciton are same and no hysteresis loop exists. In this case, the system cannot
be used as a memory cell because one cannot ensure that all charge solitons are trapped in the
system. As can be seen from the figure, the critical stray capacitances ηc at which �V (1) = 0
strongly depend on the values of α and β. For weak coupling capacitance, the critical stray
capacitances of the single electron and single exciton increase with increase of the input gate
capacitance. However, for strong coupling capacitance the critical stray capacitances of the
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single electron increase with increase of the input gate capacitance whereas those of the single
exciton decrease with increase of the input gate capacitance. Moreover, it is shown that for
a fixed value of β the critical stray capacitances of all charge solitons increase with increase
of the coupling capacitance. The dependence of the critical stray capacitances on parameters
given for the system can be readily obtained by putting �V (1) = 0 in equations (11)–(13).
The detailed investigation will be discussed later.

Figure 3 shows the coupling capacitance dependence of�V (1) (in units of e/C) for various
charge solitons, where we plot the hysteretic voltage gap of equations (11)–(13) as a function
of the ratio of the coupling capacitance to the junction capacitance, i.e., α (≡CC/C) at N = 3,

Figure 3. The hysteretic voltage gaps �V (1) (in units of e/C) of a single-electron dual-junction-
array trap with N = 3 for various charge solitons, as a function of CC/C at (a) C1/C = 0.5, 1, 5
(from bottom to top of the left-hand side for solid lines and dashed lines, and from top to bottom for
the dotted lines) for C0/C = 0.5 and (b) C1/C = 0.5, 1, 5 (from bottom to top of the right-hand
side for solid lines and dashed lines, and from top to bottom of the right-hand side for dotted lines)
for C0/C = 2. Here CC , C1, C, and C0 are the coupling capacitances, input gate capacitances,
junction capacitances, and stray capacitances, respectively.
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m = 1, and β (≡C1/C) = 0.5, 1, 5 for two different stray capacitances: (a) η (≡C0/C) = 0.5
and (b) η = 2. It is clearly seen from figures 3(a) and 3(b) that the single exciton has larger
hysteretic voltage gaps than any other charge soliton when the coupling capacitance becomes
strong for all given values of β and η, and that the hysteretic voltage gaps of all charge solitons
decrease with increase of the stray capacitance, as in figure 2. Therefore, we can see that the
single exciton is a candidate for use in constructing the most stable single-electron circuits, and
that the effect of the stray capacitance reduces the stability of the system. When the coupling
capacitance is very small for β � 1 and η = 2, the combined soliton has larger hysteretic
voltage gaps than any other charge soliton, but the gaps are very small. So, no special attention
will be paid to this case. The cotunnellingm-dependence of the hysteretic voltage gaps�V (m)
(in units of e/C) for various charge solitons is shown in figure 4, where we plot the hysteretic
voltage gap of equations (11)–(13) as a function of the cotunnelling m at α = 0.5, β = 5, and
N = 10, for different stray capacitances: η = 0.005, 0.05, 0.5. It can be seen from the figure
that the hysteretic voltage gaps of the single electron and single exciton at fixed values of α, β,
and η decrease with increase of the cotunnelling m. This means that when the cotunnelling m
increases, the threshold voltages for the escape of the single electron and exciton decrease or
those for the tunnelling of the single electron and single exciton increase. Thus, the effect of
the cotunnelling reduces the stability of the system. Unlike in the cases for the single electron
and exciton, the hysteretic voltage gaps of the combined soliton remain constant for given η as
the cotunnelling increases. It is to be noted that the changes of the hysteretic voltage gaps of
single charge solitons depending on the cotunnelling m can be understood from the changes
of the free energy and the threshold voltage depending on the cotunnelling m.

Figure 4. The hysteretic voltage gaps �V (1) (in units of e/C) of a single-electron dual-junction-
array trap with N = 10 for various charge solitons, as a function of cotunnelling m at CC/C = 0.5
and C1/C = 5 for C0/C = 0.005, 0.05, and 0.5 (from top to bottom of the right-hand side). Here
CC , C1, C, and C0 are the coupling capacitances, input gate capacitances, junction capacitances,
and stray capacitances, respectively.

Next, we study the dependence on α, β, and N of the critical stray capacitances (ηc) in
more detail, taking m = 1 as an example. The dependence of the critical stray capacitances
can be readily obtained by putting �V (1) = 0 in equations (11)–(13), as discussed in relation
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to figure 2. Since the analytical results for ηc have complicated forms, we present some results
numerically in the following. The general relationship between ηc and α for various charge
solitons is illustrated in figure 5, where we plot ηc as a function of α at β = 0.5, 1, 2 for
N = 3 and m = 1. It is clearly seen from the figure that the critical stray capacitances of
all charge solitons increase slowly or rapidly with the increase of the value of α for all given
β-values and that those of the single exciton and combined soliton have a more complicated
dependence on the value of β for fixed values of α: in the small-α region, their critical stray
capacitances increase with increase of the value of β. However, they decrease with increase
of the value of β, except for in specific regions of α, as the value of α increases. It is to be
noted that the system cannot be used as a memory cell for every point above each line. The
N -dependence of the critical stray capacitances for various charge solitons, for various values
of β at α = 0.5 andm = 1, is presented in figure 6. It can be seen from the figure that for given
α and β, the changes of the critical stray capacitances of all charge solitons are expected for
N < 3 and they are not influenced by the number of junctions for N � 3, since they remain
constant for increasing number of junctions. Moreover, for a fixed value ofN , the critical stray
capacitances for all charge solitons increase with increase of the value of β. It is to be noted
that there is no hysteresis loop for every point above each line.

Figure 5. The critical value ηc ofC0/C at which�V = 0 for various charge solitons, as a function
of CC/C at C1/C = 0.5, 1, 2 (from bottom to top of the left-hand side) for m = 1 and N = 3.
Here, N is the number of tunnelling junctions on each side of the single-electron dual-junction-
array trap and CC , C1, C, and C0 are the coupling capacitances, input gate capacitances, junction
capacitances, and stray capacitances, respectively. For every point above each line there is no
hysteresis.

So far, we have obtained the hysteretic voltage gaps of the single-electron dual-junction-
array trap with equal stray capacitances for various charge solitons including a single electron,
an exciton, and a combined soliton. With the analytical results obtained, we have performed a
numerical analysis of the hysteretic voltage gaps, in order to understand their dependence on the
stray capacitance, the coupling capacitance, the input gate capacitance, and the cotunnelling. In
addition, we have investigated the dependence on α, β, andN of the critical stray capacitances
(ηc) at which �V (1) = 0 in equations (11)–(13). Unfortunately, we do not have any
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Figure 6. The critical value ηc of C0/C for �V = 0 for various charge solitons, as a function of
N at C1/C = 0.5, 1, 2 (from bottom to top of the right-hand side) for m = 1 and CC/C = 0.5.
Here, N is the number of tunnelling junctions on each side of the single-electron dual-junction-
array trap and CC , C1, C, and C0 are the coupling capacitances, input gate capacitances, junction
capacitances, and stray capacitances, respectively. For every point above each line there is no
hysteresis.

experimental results on the single-electron dual-junction-array trap, except for the numerical
results of Amakawa et al [5] obtained for no stray capacitance and weak coupling and input
gate capacitances. Our results show that the hysteretic voltage gaps strongly depend on the
stray capacitance C, the input gate capacitance C1, the coupling capacitance CC , and the
cotunnelling m. For weak coupling capacitance and all given β-values, all charge solitons
have their maximum values of hysteretic voltage gaps at η = 0 and the hysteretic voltage
gaps of all charge solitons decrease as the stray capacitance η increases. It is shown for weak
coupling capacitance that the single exciton is a candidate for use in constructing the most
stable single-electron circuits, as suggested by Amakawa et al [5], because the exciton has
larger hysteretic voltage gaps than any other charge solitons except for large η. For strong
coupling capacitance and all given β-values, the single electron and combined soliton have
their maximum values of hysteretic voltage gaps at η = 0 and their hysteretic voltage gaps
decrease with increase of the stray capacitance η, as in the case of weak coupling capacitance.
However, the single excitons have the maximum values of hysteretic voltage gaps at a specific
value of the stray capacitance and they have larger hysteretic voltage gaps than any other charge
soliton except for large η, as in the case of weak coupling capacitance. Thus, the single exciton
is a candidate for use in constructing the most stable single-electron circuits. It is interesting to
note that for weak coupling capacitance the most stable single-electron circuits are constructed
in the absence of stray capacitance, whereas for strong coupling capacitance the most stable
single-electron circuits are constructed in the presence of stray capacitance. Moreover, the
hysteretic voltage gaps of all charge solitons are very sensitive to the cotunnelling effect. It is
shown that the hysteretic voltage gaps of the single electron and single exciton at fixed values
of α, β, and η decrease with increase of the cotunnelling m. However, the hysteretic voltage
gaps of the combined soliton remain constant for given η as the cotunnelling increases. It is to
be noted that the changes of the hysteretic voltage gaps of single charge solitons depending on
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the cotunnelling m can be understood from the changes of the free energy and the threshold
voltage depending on the cotunnelling m. In addition, the critical stray capacitances in which
no hysteresis is expected depend on the coupling capacitor CC , the junction capacitance C,
the input gate capacitance C1, and the number of junctions, as well as the cotunnelling.

In conclusion, the hysteretic voltage gaps are very sensitive to the stray capacitanceC, the
input gate capacitance C1, the coupling capacitance CC , the cotunnelling m, and the number
of junctions N . A single exciton can be a candidate for use in constructing more stable single-
electron circuits, depending on the parameters of the system. We expect the quantitative and
qualitative behaviours investigated in this paper to provide useful information pertinent to
future experiments.
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